Better Quality Through Better Measurement OCC

Faculty/Staff
Jesse McCall, MBA, Senior Director and Improvement Advisor, IHI
Robert Lloyd, PhD, Vice President Improvement Science, IHI
Rebecca Steinfield, MA, Senior Project Director IA Program, IHI
Elena Origlio Project Manager, IHI
What questions do you have about the program that you are hoping to have answered today? Please put them in the chat and we will try to get through as many as we can on today’s call!
Improving Care
Improving Lives
with You

ihi.org
IHI Mission
To improve health and health care worldwide

IHI Vision
Everyone has the best care and health possible
Working alongside you to improve health and health care worldwide!
What IHI Believes

That health and health care can and must be better.

There can be no quality without equity.

Improvement science and methods drive results.
Better Quality Through Better Measurement
Learning Objectives

1. Describe the concepts and methods of measurement for improvement
2. Apply the steps/tools in the quality measurement journey to a system you are improving
3. Design a family of measures
4. Construct effective data collection plans that incorporate stratification and sampling methods
5. Design run and control charts to analyze data for improvement
6. Distinguish common and special cause variation in data
Continuing Education

In support of improving patient care, the Institute for Healthcare Improvement is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the health care team.
Continuing Education

This program offers 14 hours of CEs for:

• Physician (ACCME)
• Nursing (ANCC)
• Pharmacy (APCE)
• Certified Professionals in Patient Safety (CPPS)
• Certified Professionals in Healthcare Quality (CPHQ) *(Application in process)*
Who Attends?

This online course is open to professionals familiar with quality improvement methods interested into taking a deeper look into measurement.

- Quality Leaders and Managers
- Chief Quality Officers
- Patient Safety Officers/Executives
- Data Analytics Staff
Measurement OCC Faculty

Jesse McCall
Program Director
Lead Faculty

Robert Lloyd
Lead Faculty

Rebecca Steinfeld
Support Faculty
Measurement is Central to Improvement

• The purpose of measurement in QI work is for *learning not judgment!*

• All measures have limitations, but that does not negate their value for learning

• You need a set of 3-8 measures reported daily, weekly or monthly

• Measures should be linked to the team’s Aim.

• Measures should be used to guide improvement and test changes.

• Measures should be integrated into the team’s daily routine and make use of existing databases when possible
Chat Question...

What is your biggest challenge around measurement?
Measurement ditches

- Overambitious plans
- Unclear operational definitions
- Measure is not sensitive enough to capture improvement
- Unclear/insufficient sampling plans
- Measures not linked to improvements
- Plans did not factor in analysis and collection roles
- Data collection plans hard to implement
- Trouble with analysis
 - Skill level
 - Missing data

A mixed-methods study of challenges experienced by clinical teams in measuring improvement. Woodcock, Liberati & Dixon Woods, BMJ Qual Saf August 2019
Milestones in the Quality Measurement Journey (QMJ)

AIM (How good? By when?)
- Concept
- Measure
- Operational Definitions
- Data Collection Plan
- Data Collection
- Analysis

ACTION
Building a Measurement System that Works!

Organizing Your Measures Worksheet

<table>
<thead>
<tr>
<th>Concept</th>
<th>Potential Measure(s)</th>
<th>Outcome</th>
<th>Process</th>
<th>Balancing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operational Definition Worksheet

Measure Name:
(Remember this should be specific and quantifiable, e.g., the time it takes to... the number of... the percent of... or the rate of...)

Operational Definition:
Define the specific components of this measure. Specify the numerator and denominator if it is a percent or a rate. If it is an average, identify the calculation for deriving the average. Include any special equipment needed to capture the data. If it is a score (such as a patient satisfaction score) describe how the score is derived. When a measure reflects concepts such as accuracy, complete, timely, or an error, describe the criteria to be used to determine "accuracy."

Data Collection Plan Worksheet

<table>
<thead>
<tr>
<th>Measure Name</th>
<th>Is stratification appropriate? Yes, but by what criteria?</th>
<th>Will you use sampling? If yes, describe the sampling method you will use</th>
<th>Frequency of data collection (e.g., hourly, daily, weekly?)</th>
<th>Duration of data collection (e.g., how long is your plan to collect the data?)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measurement Dashboard Worksheet

<table>
<thead>
<tr>
<th>Measure Name</th>
<th>Operational Definition</th>
<th>Data Collection Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Defining the measure in very specific terms)</td>
<td>(What will the data be collected? Who will do it? Frequency? Condition? What is to be excerpted?)</td>
</tr>
<tr>
<td></td>
<td>Provide the numerator and the denominator if a percentage or rate.</td>
<td>See as clear and unambiguous as possible.</td>
</tr>
</tbody>
</table>

Three uses of time series charts

1. Make process performance visible

2. Determine if a change is an improvement

3. Determine if we are holding the gains
A Run Chart!

One measure at a time, could be a percent, count, time, length, weight, etc.

The centerline (CL) on a Run Chart is the median (half of the data points are above/below the median)

The Y Axis is the unit of measure

The measure is plotted over time displayed on the X Axis

Pressure Ulcer Count in the Wilson Unit (run chart)
A Control/SPC/Shewhart Chart!

An indication of a special cause

(Upper Control Limit) UCL=44.855

CL=29.250

LCL=13.645

\(\bar{X} \) (Mean)
Why are Control Charts preferred over Run Charts?

Because Control Charts...

1. Are more sensitive than run charts
 • A run chart cannot detect special causes that are due to point-to-point variation (median versus the mean)
 • Tests for detecting special causes can be used with control charts

2. Have the added feature of control limits, which allow us to determine if the process is stable (common cause variation) or not stable (special cause variation).

3. Can be used to define process capability.

4. Allow us to more accurately predict process behavior and future performance.
Course Topics

Lesson 1 – Why are you measuring? Introduction to the Quality Measurement Journey

Lesson 2 – Aims, Moving from concepts to measures, Operational Definitions

Lesson 3 – Understanding variation

Lesson 4 – Run charts

Lesson 5 – Control charts

Lesson 6 – Linking measurement to improvement
Technical Requirements

Participants should be proficient with Excel.

We will be using Excel to create run charts.

Participants may wish to purchase SPC software.

We will cover how to select the correct control charts and how to analyze them, but will not be using a specific software to instruct the creation of them.
Six Self-Paced Lessons

- Lessons are released every two weeks for you to review when it fits your schedule
Virtual Calls

- Virtual sessions are hosted on Zoom and will run for 1 hour.
- We expect you to attend all sessions.
- However, for the occasional conflict, all sessions are recorded.
For more information contact:

eoriglio@ihi.org
jmccall@ihi.org
rlloyd@ihi.org

We hope you can join us on our journey!